MPST: A Corpus of Movie Plot Synopses with Tags

نویسندگان

  • Sudipta Kar
  • Suraj Maharjan
  • Adrián Pastor López-Monroy
  • Thamar Solorio
چکیده

Social tagging of movies reveals a wide range of heterogeneous information about movies, like the genre, plot structure, soundtracks, metadata, visual and emotional experiences. Such information can be valuable in building automatic systems to create tags for movies. Automatic tagging systems can help recommendation engines to improve the retrieval of similar movies as well as help viewers to know what to expect from a movie in advance. In this paper, we set out to the task of collecting a corpus of movie plot synopses and tags. We describe a methodology that enabled us to build a fine-grained set of around 70 tags exposing heterogeneous characteristics of movie plots and the multi-label associations of these tags with some 14K movie plot synopses. We investigate how these tags correlate with movies and the flow of emotions throughout different types of movies. Finally, we use this corpus to explore the feasibility of inferring tags from plot synopses. We expect the corpus will be useful in other tasks where analysis of narratives is relevant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature extraction using Latent Dirichlet Allocation and Neural Networks: A case study on movie synopses

Feature extraction has gained increasing attention in the field of machine learning, as in order to detect patterns, extract information, or predict future observations from big data, the urge of informative features is crucial. The process of extracting features is highly linked to dimensionality reduction as it implies the transformation of the data from a sparse highdimensional space, to hig...

متن کامل

پیکره اعلام: یک پیکره استاندارد واحدهای اسمی برای زبان فارسی

Named entity recognition (NER) is a natural language processing (NLP) problem that is mainly used for text summarization, data mining, data retrieval, question and answering, machine translation, and document classification systems. A NER system is tasked with determining the border of each named entity, recognizing its type and classifying it into predefined categories. The categories of named...

متن کامل

Bollywood Movie Corpus for Text, Images and Videos

In past few years, several data-sets have been released for text and images. We present an approach to create the data-set for use in detecting and removing gender bias from text. We also include a set of challenges we have faced while creating this corpora. In this work, we have worked with movie data from Wikipedia plots and movie trailers from YouTube. Our Bollywood Movie corpus contains 400...

متن کامل

Towards User Profile-based Interfaces for Exploration of Large Collections of Items

Collaborative tagging systems allow users to describe and organize items using labels in a free-shared vocabulary (tags), improving their browsing experience in large collections of items. At present, the most accurate collaborative filtering techniques build user profiles in latent factor spaces that are not interpretable by users. In this paper, we propose a general method to build linear-int...

متن کامل

A psychological analysis of the movie Under the Smokey Roof (2017) based on the family therapy theories

Movies are considered an effective educational resource for students, especially those who study Psychology. The purpose of this study is to analyze the movie "Under the Smokey Roof" directed by Pouran Derakhshandeh, based on the family therapy theories. This movie shows the story of a family struggling with different social and psychological issues. In this article, a descriptive-analytical me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.07858  شماره 

صفحات  -

تاریخ انتشار 2018